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Abstract - This paper describes a system for esti-

mating the local density of small objects on the sea

floor by exploiting a robust, non-parametric detec-

tor for high resolution images acquired by side scan

sonar sensors. Low grazing angle target images are

characterised by an area of strong intensity, the high-

light, close to an area, the shadow, at the sensor

noise level. The detector makes use of mathematical

morphology to detect the highlight and the shadow

areas within the image, and a fusion scheme to re-

duce the false alarms due to the sea floor disturbance

by declaring a target acquired if an highlight is close

to a shadow. Results on data sets collected in the

Ligurian and Baltic Sea are reported and discussed.

Keywords: imaging sonar, signal processing, detection,

decision fusion.

1 Introduction

Small bottom object (SBO) local density maps of un-
known undersea sites are useful in planning mine hunt-
ing missions over these areas in order to maximise the
percentage of clearance and at the same time, min-
imise mission costs. Mission resources can be utilised
in an efficient manner, for example, focusing the mis-
sion on areas of less SBO density where it is more likely
to achieve good mine detection performance with low
false alarm rate.

This paper describes a methodology for estimating
of the density of SBOs on the seafloor from high reso-
lution data acquired by imaging sonar sensors such as
the side scan sonar (SSS). The method relies on an au-
tomatic detection system which is based on mathemat-
ical morphology (MM) operations [1]. The detector is
totally non-parametric and robust against variations of
the sea floor and the object intensity signal.

Automatic detection of objects from imaging sonar
data is challenging for several reasons. The signal scat-
tered by the sea floor is a non-Gaussian disturbance
that is highly non-stationary both in space and time
depending on the seafloor roughness and the viewing
geometry [2]. Difficulties also arise in modelling the
signal received by SBOs due to the wide variety of
shapes that may characterise a man-made or natural
object. The statistical description of the disturbance
and target signals for optimum detection may be un-

feasible or may require models that may complicate
the architecture of the detector [3].

The non-parametric detector proposed in this paper
does not assume any statistical model of the sea floor
and the target signals. The constraints on the two sig-
nals are quite general and are met in the majority of
cases. In particular the object signal at low grazing
angles is usually characterised by a highlight area of
stronger intensity than the sea floor mean value, close
to a shadow area at the sensor noise level. The detec-
tor extracts the highlight and the shadow areas from
the input image by estimating adaptively the minimum
and maximum levels of the seafloor background signal
envelope through a series of morphological non-linear
filters [1]. The false alarms within the highlight seg-
mentation mask, due to the residuals of the distur-
bance, are then rejected by fusing the information pro-
vided by the shadow mask.

The estimation of the local object clutter density as
a function of the position is achieved by simply dividing
the surveyed area in squared regions with a pre-defined
extent and counting the number of contacts per unit
surface in each subset.

The proposed methodology was tested on real data
acquired by a ship towed side scan sonar with a central
frequency of 455 KHz and by a 900 KHz side scan sonar
mounted on board a series of REMUS autonomous un-
derwater vehicles (AUVs). The data sets were gathered
on areas located in the Baltic Sea and the Ligurian Sea.
The test results indicated positive performance of the
detector. A more thorough investigation to asses the
detector performance quantitatively is planned.

The section below gives an overview of basic MM;
section 3 describes the detector architecture while sec-
tion 4 reports and discusses the results of side scan
sonar data of the Ligurian and the Baltic Sea. Sec-
tion 5 summarises our conclusions and outlines future
developments.

2 Basic mathematical morphol-
ogy operations

Mathematical morphology (MM) applied to image pro-
cessing aims at analysing the discrete geometry of ob-
jects within the image under study through set the-
ory and topology [1, 4]. It provides a wide range of
image to image operations for processing both binary
and grayscale images. Such operations works on sets
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defined on a discrete topological space.
For n-dimensional grayscale images with discrete in-

tensities ranging between 0 and M , defined in N0, the
MM transformations operate on the image subgraph.
If x ∈ Z

n is the image pixel position and f (x) the im-
age intensity value at that position, the subgraph of
the image f is defined as follows:

SG = {(x, t) ∈ Z
n × N0|0 ≤ t ≤ f (x)} . (1)

In one dimension, SG is the locus of points within
the area subtended by the signal graph. The MM op-
erators probe the image subgraph by using a set of
known shapes called structural elements (SE) [1]. An
n-dimensional image has a subgraph with n+1 dimen-
sions (for example, in a two dimensional image there
are two spatial dimensions plus one dimension for the
image intensity). In general, the SE is an n + 1 di-
mensional subset, but a large number of applications
make use of flat structuring elements defined in the n-
dimensional spatial domain of the image under study.
Throughout this work only flat SEs are considered.
The shape and the origin of the SE are chosen on the
basis of prior knowledge about the relevant or non-
relevant structures within the image itself.

The basic MM image to image transformations are
erosion and dilation. If SG (f) is the subgraph of a two
dimensional image f , for which t = f (x) is the image
discrete intensity at point x ∈ Z

2, and S a flat struc-
turing element, the erosion of SG (f) by S is defined
as follows:

εS [SG (f)] = {(x, t
)∈ Z

2 × N0 | S(x,t) ⊆ SG (f)
}
,
(2)

where S(x,t) is the structuring element with the origin
centred at (x, t). The dilation is the dual operation of
the erosion and can be defined through the following
expression:

δS [SG (f)] = {(x, t
)∈ Z

2 × N0 | S(x,t) ∩ SG (f) 	= φ
}
.

(3)
The erode and dilate operations may be implemented
as non-linear ordered statistic filters. In particular, the
erode is equivalent to a minimum filter while the dilate
is equivalent to a maximum filter [1]. A two dimen-
sional image, for example, is processed using a sliding
two dimensional window, usually rectangular, which is
moved throughout the image domain. The amplitude
of the image pixel in the origin of the translated win-
dow is substituted with the maximum or the minimum
image intensity within the window itself.

Erode and dilate filters can be arranged in order
to build new MM operators. Two derived transforma-
tions are of particular interest for the present work:
the opening and the closing [1]. The opening of an
image f , with the structural element S, is defined as
the composite of an erosion followed by a dilate with
the reflected SE, Š, which is the symmetric of S with
respect to the origin point:

ψS [SG (f)] = δŠ {εS [SG (f)]} . (4)

The closing is the dual transformation, i.e. a dilate

followed by an erode:

φS [SE (f)] = εŠ {δS [SG (f)]} . (5)

Both opening and closing are used to smooth data.
They process the subgraph in two different ways. In
particular, opening deletes from the input image sub-
graph spurious structures having a spatial scale that
is smaller than the SE size, while closing fills holes,
i.e. areas not belonging to the image subgraph, which
have a spatial scale that is small compared to the SE
size. Opening and closing filters are combined in order
to built an MM algorithm which is used to estimate
the sea floor signal disturbance from the image data as
stated in the following section.

3 The morphological detector

This section describes in details the detector archi-
tecture. In particular, section 3.1 gives an overview
of the basic sonar signal characteristics that are ex-
ploited in order to reduce sea floor disturbance and
false alarms after signal segmentation. Section 3.2 in-
troduces the architecture of the MM detector and de-
scribes the sea floor background estimation and the
fusion scheme used to reduce the false alarm rate.

3.1 Target signal and sea floor distur-
bance

Small natural or man made objects have various shapes
that can be imaged from different grazing and aspect
angles. The received object signal may be distorted in
several ways depending on the viewing geometry. For
these reasons, the detector was designed with the as-
sumption that the exact shape of the object signal is
completely unknown except for a set of basic charac-
teristics. An example of SBOs imaged at low grazing
angle by a side scan sonar with a central frequency of
455 kHz is depicted in fig. 1. It is clear from this pic-
ture and also from fig. 2, showing the range signal of
a SBO on a sand seafloor, that the object signal, es-
pecially at low grazing angles, has a highlight area of
strong intensity, close to a shadow area of low intensity
comparable with the sensor noise level. Since the exact
shape and size of the objects are unknown, hypotheses
on the minimum and maximum size of the objects to be
detected will be taken into account. These structural
characteristics of the useful signal will be exploited in
the detector for reducing the false alarm rate.

For high resolution sensors, the intensity of the sea
floor signal can be modelled as a non-Gaussian random
process usually characterised by a heavy tailed prob-
ability density function (pdf) [2] such as the K or the
Generalised-K. The sea floor is highly variable in space,
due to the presence of different kinds of sediments,
rocky areas, sand ripples, etc., and in time on long
scales. This variability implies the non-stationarity of
the sea floor signal process and thus the need for a
detector that is able to adaptively estimate the distur-
bance. A parametric detector requires to locally model



Figure 1: Example of small bottom objects imaged by
a side scan sonar.
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Figure 2: Side scan sonar slant range signal of an object
on a sand sea floor.

the pdf of the sea floor process in order to detect a
target against the disturbance [5]. On the contrary,
non-parametric detectors do not assume any kind of
statistical model of the disturbance, resulting in a sim-
pler architecture. In this work, the latter approach was
considered. The discrimination between the target and
the sea floor is based on the hypothesis that the two
signals have a significantly different spatial structure.
Statistically, sea floor signal amplitude ranges between
a minimum and a maximum envelope level which varies
with sea floor characteristics. Locally, in the vicinity of
the target signal, the minimum level is usually greater
than the target shadow amplitude, while the maximum
level is lower than the highlight intensity. Once esti-
mated, the two envelope levels may be used as spatially
adaptive thresholds for detecting the highlight and the
shadow areas inside an image. The MM processor in-
cluded in the detector architecture is used, as stated
in the following section, for estimating these two lev-
els assuming the target signal as a non-relevant image
structure.

3.2 Detector structure

The minimum and maximum envelope levels of the
sea floor signal are adaptively estimated, as stylised in
fig. 3, by using combinations of two dimensional erode
and dilate filters. The detector tracks the disturbance
and at the same time, uses the estimated envelope lev-
els as thresholds to segment the input image and pro-
duce a mask of highlight and non-highlight areas, and

a second mask of shadow and non-shadow areas. The
two segmentation masks are then fused together for
deleting those highlight areas that are not close to a
shadow area, suppressing in this way the residual false
alarms due to sea floor disturbance.

Figure 3: Estimation of sea floor signal maximum and
minimum envelopes.

The detector architecture is depicted in fig. 4. The
input signal, s [m,n], enters two main branches. The
first one estimates the sea floor upper envelope level,
λh [m,n], and detects the highlights. The second
branch segments the shadow areas using as threshold
the estimation of the minimum sea floor signal level,
λs [m,n]. The outputs are binary images where a group
of adjacent resolution cells is a binary object. The
images from the two branches are fused to suppress
those highlight objects which are not close to a shadow
object, producing the final detection mask, mh [m,n],
containing highlight objects due to targets with higher
confidence than the intermediate highlight mask after
the segmentation step.

Highlight
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scheme

Maximum
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estimator
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Figure 4: MM detector scheme.

3.2.1 Sea floor envelope level estimator

The sea floor envelopes are estimated by using cascades
of opening and closing as depicted in fig. 5 and fig. 6.
In particular the sea floor upper level is tracked by
filtering the input signal by a closing followed by an
opening (fig. 5). The dual filter, that is an opening
followed by a closing, is used for the estimation of the
minimum envelope level (fig. 6). The SE for both the



estimators is a two dimensional square window with
the origin in the centre of the window.

Closing Opening
s [m,n] λh [m,n]

Figure 5: Morphological filters used for estimating the
maximum sea floor envelope level.

Opening Closing
s [m,n] λs [m,n]

Figure 6: Morphological filters for estimating the min-
imum sea floor envelope level.

Figures 7 and 8 show the results on a side scan sonar
image with a SBO and two types of sea floor, sand and
sand ripples. The figure depicts the range signal for
a fixed azimuth cell in black and the minimum and
maximum envelope levels in red. Figure 7 shows the
maximum level estimated by the closing-opening filter
with a two dimensional squared filtering window of 23
resolution cells. The output level adaptively follows
the sea floor level profile, remaining below the target
highlight samples for a large part of the target spatial
extent. The estimation of the minimum sea floor enve-
lope by using the opening-closing filter with a square
window SE of 15 resolution cells is depicted in fig. 8.
The output level tracks the minimum sea floor signal
while the samples with an amplitude close to the sensor
noise level remain below the output level.
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Figure 7: Example of maximum sea floor envelope level
estimation (red lines) by morphological processing.

Figure 9 depicts a test image which is used to show
how the closing-opening filter processes the input sig-
nal in order to estimate the maximum sea floor en-
velope level. The image (see fig. 9(a)) has been ac-
quired by a SSS with a central frequency of 455 KHz
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Figure 8: Example of minimum sea floor envelope level
estimation (red lines) by morphological processing.

and shows a SBO on a sand sea floor. The resolu-
tion is roughly 10 cm for both the slant range and az-
imuth directions. Figure 9(b) shows the 1D range sig-
nal used for demonstrating the filter capabilities. The
red line in fig. 9(a) shows the azimuth cell (ping num-
ber) along with the signal samples are collected. The
target highlight and shadow regions are clearly visible
in the graph. The signal is first processed by a dilate
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Figure 9: a) mine like object on sand sea floor; b) range
signal relative to the considered azimuth cell.

filter having a linear SE of 23 range cells. Figure 10(a)
shows the input signal in blue and the output signal
in red. The purpose of the dilate is to filter out the
small scale signal structures and to expand the signal
subgraph so that the output is always greater than the
input signal. The erode transformation (fig. 10(b)) is
then used to shrink the signal subgraph in order to
make the envelope closer to the original signal enve-



lope.
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Figure 10: Closing filtering for the estimation of the
maximum sea floor envelope level of the one dimen-
sional signal in fig. 9(b). a) dilate operation. b) erode.

The second step includes an opening operation
(fig. 11). The output from the closing filter is first
eroded. Figure 11(a) shows the input signal in blue
from the closing filter and the result in red. Choosing
the filtering window size greater than the maximum
highlight object spatial size that can be detected, the
output of the erode removes the target structures re-
ducing the highlight amplitude at the local sea floor
envelope level. A dilate filter follows in order to expand
the subgraph and recover the true signal envelope.

3.2.2 Fusion scheme

As its first processing step, the fusion block enhances
the shape of the detected binary highlight and shadow
objects by using a series of binary MM operators [1].
The highlight mask is then processed in order to label
[1] each binary object so that they can be extracted
from the mask. Object shape features, such as the
object area or the centre of mass, can now be calcu-
lated. The objects with an area which is not in a pre-
determined range are filtered out. This enhanced high-
light mask, namely m0

h [m,n], is then fused for false
alarm reduction with the shadow mask.

The test for the presence of a shadow area close
to a binary highlight object is performed by placing
a rectangular window near the object position, on the
mask m0

h [m,n], as depicted in fig. 12. The window
parameters are the size in along track, Wa, and slant
range, Wr, and the length, Wt, of the transition region
(see fig. 12). They are set depending on the highlight
object size and the maximum elongation of the object
shadow area. If the number of shadow resolution cells
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Figure 11: Opening of the output from the closing fil-
ter in fig. 10 with the same SE. a) erode operation b)
results of dilate.

in ms [m,n], within the test window is greater than a
fixed percentage of the total number of cells contained
in the window itself, then the binary highlight object
considered is declared as an acquired target. The test
is repeated for each highlight area detected in the mask
m0

h [m,n] in order to produce the final highlight map,
mh [m,n], containing the object declared as targets.
The centre of mass of each binary highlight object is
then considered for target geo-location and successive
SBO density estimation.

+

Test window

Shadow area

Highlight area

Centre of mass

Wr

Wa

Transition region

Slant range

Figure 12: Shadow proximity test window position.

4 Results

This section discusses results from test using data sets
acquired in the Ligurian and Baltic Sea by sensors
on board REMUS autonomous underwater vehicles



(AUVs) and by ship towed sensors. While the two
sites are quite similar with regard to sea floor type,
they differ significantly in terms of average SBO den-
sity. The SBO local density maps were estimated by
dividing each surveyed area into subareas of 25 by 25
meter in order to form a regular grid over the site.
The centre mass of the binary objects in mh [m,n] are
then geo-referenced and the number of these contacts
within each sub-window was divided by the value of
the window area in order to estimate the SBO density
as a function of the position. The grid of local density
is then smoothed by using a two dimensional gaussian
filter, with a filtering window of 5×5 grid cells, in order
to regularise the density map.

4.1 Detector tests

The MM detector was tested on a set of sample images
like the one in fig. 13 showing a SBO on a sand ripple
sea floor. The image was acquired in the Ligurian Sea
by using a ship towed SSS with a central frequency of
455 kHz. Several test images were extracted from the
survey data set in order to asses detector performance
qualitatively.
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Figure 13: Test image with an SBO on a sand ripple
sea floor. Sonar frequency: 455kHz.

Figure 14(a) shows the image highlight detection
mask, m0

h [m,n], after highlight labelling and size fil-
tering. The target highlight is clearly visible in the
circle. Highlight objects are present, which are false
alarms due to sea floor signal samples exceeding the
envelope level estimated through the MM processor,
are present together with the target. The area cov-
ered by the image is approximately 30 × 30 meter and
70 false alarms were detected after adaptive threshold
application.

Figure 14(b) depicts the shadow segmentation
mask, ms [m,n]. The target shadow (inside the red
circle) was correctly retrieved together with the ripple
shadow areas.

The two masks are fused in the shadow proximity
test block in order to produce the final detection mask,
mh [m,n], in which the false alarm objects are com-
pletely rejected (see fig. 15). The size of the square fil-
tering windows used in the MM processor was 21× 21
and 15×15 resolution cells for the highlight segmenta-
tion and the shadow segmentation, respectively. The
minimum and the maximum highlight object area were
3 × 3 and 61 × 61 resolution cells, respectively. The
shadow proximity test parameters used for this test
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Figure 14: a) highlight detection mask, m0
h [m,n], after

size filtering. b) shadow detection mask ms [m,n].

are Wa = 50% of the along track highlight object size,
Wr = 31 range cells and Wt = 5 range cells. The
test threshold was 50% of the testing window area in
number of resolution cells.

The tests revealed that the proposed automatic de-
tection system is robust against sea floor disturbance,
reaching good performance in terms of false alarm rates
even in the presence of severe environmental conditions
such as the location of the target on a sand ripple sea
floor. The tests also provided a set of system parame-
ters which were used as reference values for processing
other data sets like the ones presented in the following
subsections.
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Figure 15: Final detection mask after the shadow prox-
imity test.

4.2 Ligurian Sea data set

The Ligurian Sea data set was acquired on four areas
located in a harbour environment, by different REMUS
AUVs equipped with a 900 kHz SSS. Dummy targets
were deployed on the area of interest and their po-
sition were measured and compared with geo-located
contacts from the detection system. The analysis of
the contacts from the dummy targets yielded an av-
erage distance from the nominal target position of 4.5
meter with a standard deviation of 2.2 meter and a
minimum and maximum distance value of 2.3 and 9.5
meter respectively.

Figures 16 and 17 show an example of SBO den-
sity estimation for one of the acquired SSS data
sets. In particular, fig. 16 depicts the AUV mis-
sion tracks and the geo-referenced SBO contacts de-
tected by the MM processor. The contacts acquired
during this mission were 629 on a surveyed area of
0.077Km2. The mean SBO density over the area



is about 3500 contacts/Km2. Figure 17 shows a
three dimensional plot of the SBO density as a func-
tion of the position. Maximum density on the area
is 23000 contacts/Km2 with a standard deviation of
3000 contacts/Km2.
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Figure 16: Example of geo-referenced contacts de-
tected by the morphological processor. Projection:
UTM. Datum WGS-84.
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Figure 17: Example of estimated local SBO density
map for a data set collected on the Ligurian Sea.

4.3 Baltic Sea data set

The Baltic Sea area is characterised by an higher den-
sity of SBOs than the Ligurian Sea area. The survey
was composed of a total of 10 AUV missions over dif-
ferent sites. Figure 18 shows the AUV tracks for one
of the executed mission and the geo-referenced con-
tacts detected by the MM detector. The mission area
is 0.33Km2 that is about 4 times the mission area
described in the example in section 4.2. A total of
5652 contacts were acquired that is 8 times the num-
ber of contacts in the previous example. The aver-
age density over the area is 13000 contacts/Km2. A
three dimensional view of the local density map is re-
ported in fig. 19. In this case the maximum density
is 64000 contacts/Km2 with a standard deviation of
12000 contacts/Km2. Figure 20 shows a two dimen-
sional view of the same map from which it is possible
to understand the spatial distribution of the SBOs and
the areas of severe density conditions where detecting
mines may be challenging.
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Figure 18: Example of geo-referenced contacts de-
tected for the considered Baltic Sea area. Projection:
UTM. Datum WGS-84.
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Figure 19: Example of three dimensional local density
map for the Baltic Sea area. Projection: UTM. Datum
WGS-84.

4.4 Discussion

The results presented here as well as other tests (results
not reported in this paper) demonstrated that qualita-
tively, the proposed MM detector achieves satisfactory
rejection of the false alarms due to the sea floor signal
even though a priori knowledge about the target signal
and the sea floor disturbance is not available. General
signal characteristics are only needed, as reported in
section 3.1, in order to achieve this performance.

Processing time is another key factor for system per-
formance evaluation. The Baltic Sea data set, for in-
stance, is composed of 652000 sonar pings, about 622
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Figure 20: Two dimensional view of the local SBO den-
sity map estimated for the Baltic Sea area. Projection:
UTM. Datum WGS-84.



MByte, with 8bit/sample and 1000 range samples per
ping, which is equivalent to 181 hour of mission at
1ping/sec sonar rate. Using an optimised system soft-
ware implementation the entire data set was processed
in 2 hours with a throughput of 88 processed ping per
second. This throughput allows the system to be used
in the framework of rapid environmental assessment
(REA), before mine hunting missions, in order to pro-
duce a preliminary picture of the surveyed area in near
real time.

The local clutter density maps give useful informa-
tion about the complexity of the surveyed sites and can
be used to place mine hunting resources on those areas
characterised by low SBO density (see fig 20), where it
is more likely to achieve good area clearance.

The clutter density estimation approach used here
is extremely simple and is based on the unlikely hy-
pothesis that a target is observed only once during a
survey. This is not usually the case, so association of
different contacts acquired from the same target should
be taken into account. Contact position error assess-
ment is therefore important for correct data associa-
tion. The analysis of the location error reported in
section 4.2 yielded an average error from the measured
target position of 4.5 m. In our opinion, this value may
be sufficient for correct data association in a moderate
SBO density area, as observed in the Ligurian Sea site,
by using a simple nearest neighbor algorithm and the
estimated contact positions [6]. In denser areas, more
sophisticated techniques are probably needed such as
the joint probabilistic data association (JPDA) algo-
rithm [6], and possibly in cooperation with other type
of sensors.

5 Conclusion and future works

This paper describes a method for estimating the lo-
cal density of SBO on the sea floor from high resolu-
tion sonar images. A MM detector has been designed
and implemented to automatically detect SBOs from
sonar data. The detector is totally non-parametric and
makes use of weak constraints on the useful signal and
the disturbance from the sea floor. In particular, cas-
cades of MM non-linear filters are used for estimating
the minimum and the maximum envelopes of the sea
floor signal in order to segment the input image in its
highlight and shadow components. The segmentation
is followed by a shadow proximity test for reducing
false alarms in the highlight mask due to residual sea
floor disturbances. The acquired target contacts are
then geo-referenced and used for estimating the local
object clutter density over the area of interest. The
MM detector system is characterised by a good false
alarm rejection rate as qualitative tests performed on
sand and sand ripple sea floor images showed. The
low processing burden of the detector system makes
the proposed methodology suitable for deployment on
REA missions for which rapid delivery of results is a
fundamental requirement.

Future investigations should be focused on two main
tasks. The first is the assessment of detector per-

formance through an experimental evaluation of the
receiver operating characteristic (ROC) curves. The
analysis has to take into account different scenarios in
order to provide a set of ROC curves as a function of
sea floor type and of detector parameters such as the
size of the MM filtering windows and the shadow prox-
imity test threshold. This investigation is fundamental
in enabling the selection of detector parameters that
will produce a desired false alarm and detection rate.
In addition, this analysis may suggest useful ways for
improving overall system performance and to obtain a
more robust and reliable SBO local density estimation.

The second task concerns the problem of data as-
sociation. A target may be observed more than once
during a survey so the detected contacts from the same
target have to be associated in order to not bias the es-
timation of the SBO local density. For this reason, the
integration of the MM detector into a concurrent map-
ping and localization (CML) algorithm [7] which will
take care of data association, object initiation, main-
tenance and deletion, and vehicle state prediction and
estimation is currently under study.
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